Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Ryan McManamay; Jackson Webster; H. Valett; C. Dolloff
    Date: 2011
    Source: Journal of the North American Benthological Society 30(1):84-102
    Publication Series: Scientific Journal (JRNL)
    PDF: View PDF  (729.74 KB)


    Consumer nutrient cycling supplies limiting elements to autotrophic and heterotrophic organisms in aquatic systems. However, the role of consumers in supplying nutrients may change depending on their diet and their own stoichiometry. We evaluated the stoichiometry, N and P excretion, and diets of the dominant macroinvertebrates and fish at 6 stream sites to determine if the nutritional composition of food alters nutrient excretion. We used Sterner’s (1990) nutrient homeostasis model as a reference to gauge whether consumer nutrient excretion is influenced by diet. Body stoichiometry explained 61% of the variation in N:P excretion by macroinvertebrates but only 11% of the variation for fish. In both cases, the relationship was driven by 2 P-rich end-members, crayfish and mottled sculpin. Results of Akaike Information Criterion (AIC) analysis showed that family alone explained 71% of the variation in N:P excretion in macroinvertebrates and 31% of the variation in fish. Diet explained only 8% of the variation in both cases. Most consumers (9 of 11) had N:P excretion values that were well below predictions of Sterner’s model. Two taxa, crayfish and sculpin, had N:P excretion that overlapped the model’s predictions. Our results suggest that crayfish and sculpin may display strict homeostasis with respect to N and P and that their growth might be P-limited. Other consumers may be more flexible in their stoichiometry and not P-limited. We speculate that the extremely low excretion N:P measured for many consumers might have been the result of semiflexible homeostasis, inaccuracies in our assessment of dietary nutrients, growth-limiting nutrients other than N or P, or lack of egestion data. Our results suggest that crayfish and sculpin may alter N and P dynamics in streams by excreting low amounts of P relative to N compared to what is generally available in the water column.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    McManamay, Ryan A.; Webster, Jackson R.; Valett, H. Maurice; Dolloff, C. Andrew. 2011. Does diet influence consumer nutrient cycling? Macroinvertebrate and fish excretion in streams. Journal of the North American Benthological Society 30(1):84-102.


    Google Scholar


    stoichiometry, excretion, nutrient cycling, stream, consumers

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page