Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Wei Wu; James Clark; James Vose
    Date: 2010
    Source: Journal of Hydrology 394(3-4):436-446
    Publication Series: Scientific Journal (JRNL)
    PDF: Download Publication  (1.47 MB)


    Hierarchical Bayesian (HB) modeling allows for multiple sources of uncertainty by factoring complex relationships into conditional distributions that can be used to draw inference and make predictions. We applied an HB model to estimate the parameters and state variables of a parsimonious hydrological model – GR4J – by coherently assimilating the uncertainties from the model, observations, and parameters at Coweeta Basin in western North Carolina. A state-space model was within the Bayesian hierarchical framework to estimate the daily soil moisture levels and their uncertainties. Results show that the posteriors of the parameters were updated from and relatively insensitive to priors, an indication that they were dominated by the data. The uncertainties of the simulated streamflow increased with streamflow increase. By assimilating soil moisture data, the model could estimate the maximum capacity of soil moisture accounting storage and predict storm events with higher precision compared to not assimilating soil moisture data. This study has shown that hierarchical Bayesian model is a useful tool in water resource planning and management by acknowledging stochasticity.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Wu, Wei; Clark, James S.; Vose, James M. 2010. Assimilating multi-source uncertainties of a parsimonious conceptual hydrological model using hierarchical Bayesian modeling. Journal of Hydrology 394(3-4):436-446.


    Google Scholar


    Hierarchical Bayesian modeling, Hydrological modeling, Soil moisture, Streamflow

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page