Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Cavity tree and snag abundance data are highly variable and contain many zero observations. We predict cavity tree and snag abundance from variables that are readily available from forest cover maps or remotely sensed data using negative binomial (NB), zero-inflated NB, and zero-altered NB (ZANB) regression models as well as nearest neighbor (NN) imputation methods. The models were developed and fit to data collected by the Forest Inventory and Analysis program of the US Forest Service in Washington, Oregon, and California. For predicting cavity tree and snag abundance per stand, all three NB regression models performed better in terms of mean square prediction error than the NN imputation methods. The most similar neighbor imputation, however, outperformed the NB regression models in predicting overall cavity tree and snag abundance.

    Publication Notes

    • Visit PNW's Publication Request Page to request a hard copy of this publication.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Eskelson, Bianca N.I.; Temesgen, Hailemariam; Barrett, Tara M. 2009. Estimating cavity tree and snag abundance using negative binomial regression models and nearest neighbor imputation methods. Canadian Journal of Forestry Research. 39: 1749-1765.


    wildlife habitat, inventory methods, nesting cavities, forest mapping

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page