Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    The mean and standard deviation (SD) of light detection and ranging (LiDAR)-derived canopy height are related to forest structure. However, LiDAR data typically cover a limited area and have a high economic cost compared with satellite optical imagery. Optical images may be required to extrapolate LiDAR height measurements across a broad landscape. Different spectral indices were obtained from three Landsat scenes. The mean, median, SD and coefficient of variation (CV) of LiDAR canopy height measurements were calculated in 30-m square blocks corresponding with Landsat Enhanced Thematic Mapper Plus (ETM+) pixels. Correlation and forward stepwise regression analysis was applied to these data sets. Mean and median LiDAR height versus normalized difference vegetation index (NDVI), normalized difference moisture index (NDMI), normalized burn ratio (NBR) and wetness Tasseled Cap showed the best correlation coefficients (R2 ranging between -0.62 and -0.76). Nineteen regression models were obtained (R2 = 0.65-0.70). These results show that LiDAR-derived canopy height may be associated with Landsat spectral indices. This approach is of interest in sustainable forest management, although further research is required to improve accuracy.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Pascual, Cristina; Garcia-Abril, Antonio; Cohen, Warren B.; Martin-Fernandez, Susana. 2010. Relationship between LiDAR-derived forest canopy height and Landsat images. International Journal of Remote Sensing. 31(5): 1261-1280.

    Keywords

    LiDAR, Landsat, forest structure

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/38274