Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    A wildfire burned about 15,000 ha of Monterrey Pine (Pinus radiata D. Don) plantations near Yungay, Chile, in January of 2007. Post-fire water repellency (hydrophobicity) was measured using the water-drop-penetration-time (WDPT) method at depths of 0, 5, and 10 mm from the soil surface. These measurements were collected on burned sites of both young (4-years old) and old (11-years old) plantations having both sand- and clay-rich soils. For purpose of comparison, water repellency was also measured one year after the wildfire on four unburned sites representing the same soil types and plantation ages as those occurring on the burned sites. The statistical analyses indicated that water repellency was present only on old stands, being located on the soil surface (clay soils) or as a layer 10 mm deeper or below (sandy soils). However, a water repellent layer was found on young stands growing on sandy soils, five millimeters below the surface, assumed to be formed when a wildfire burned the area before the new plantation was established.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Garcia-Chevesich, P.; Pizarro, R.; Stropki, C. L.; Ramirez de Arellano, P.; Ffolliott, P. F.; DeBano, L. F.; Neary, D. G.; Slack, D. C. 2010. Formation of post-fire water-repellent layers in Monterrey pine (Pinus radiata D. Don) plantations in south-central Chile. Journal of Soil Science and Plant Nutrition. 10(4): 399-406.


    soil hydrophobicity, fire effects, wetting behavior

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page