Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): F. Stuart Chapin; Jack McFarland; A. David McGuire; Eugenie S. Euskirchen; Roger W. Ruess; Knut Kielland
    Date: 2009
    Source: Journal of Ecology. 97: 840-850
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: View PDF  (1.56 MB)

    Description

    Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell-Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO2, land cover, species composition and/or N deposition. Inclusion of these processes in climate-C cycle models would improve their capacity to simulate recent and future climatic change. Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below-ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non-steady-state conditions. An integrated understanding of multiple ecosystem-climate feedbacks provides a strong foundation for policies to mitigate climate change. Synthesis: Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Chapin, F. Stuart, III; McFarland, Jack; McGuire, A. David; Euskirchen, Eugenie S.; Ruess, Roger W.; Kielland, Knut. 2009. The changing global carbon cycle: linking local plant-soil carbon dynamics to global consequences. Journal of Ecology. 97: 840-850.

    Keywords

    carbon cycle, climate change, decomposition, heterotrophic respiration, mycorrhizas, net ecosystem production, net primary production, roots, soil carbon

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page