Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): A.H. Fullerton; Kelly BurnettAshley SteelRebecca Flitcroft; G.R. Pess; B.E. Feist; C.E. Torgersen; D.J. Miller; B.L. Sanderson
    Date: 2010
    Source: Freshwater Biology. 55(11): 2215-2237
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: View PDF  (4.07 MB)

    Description

    In this review, we first summarize how hydrologic connectivity has been studied for riverine fish capable of moving long distances, and then identify research opportunities that have clear conservation significance. Migratory species, such as anadromous salmonids, are good model organisms for understanding ecological connectivity in rivers because the spatial scale over which movements occur among freshwater habitats is large enough to be easily observed with available techniques; they are often economically or culturally valuable with habitats that can be easily fragmented by human activities; and they integrate landscape conditions from multiple surrounding catchment(s) with in-river conditions. Studies have focussed on three themes: (i) relatively stable connections (connections controlled by processes that act over broad spatio-temporal scales >1000 km2 and >100 years); (ii) dynamic connections (connections controlled by processes acting over fine to moderate spatio-temporal scales ~1-1000 km2 and <1-100 years); and (iii) anthropogenic influences on hydrologic connectivity, including actions that disrupt or enhance natural connections experienced by fish. We outline eight challenges to understanding the role of connectivity in riverine fish ecology, organized under three foci: (i) addressing the constraints of river structure; (ii) embracing temporal complexity in hydrologic connectivity; and (iii) managing connectivity for riverine fishes. Challenges include the spatial structure of stream networks, the force and direction of flow, scale-dependence of connectivity, shifting boundaries, complexity of behaviour and life histories and quantifying anthropogenic influence on connectivity and aligning management goals. As we discuss each challenge, we summarize relevant approaches in the literature and provide additional suggestions for improving research and management of connectivity for riverine fishes. Specifically, we suggest that rapid advances are possible in the following arenas: (i) incorporating network structure and river discharge into analyses; (ii) increasing explicit consideration of temporal complexity and fish behaviour in the scope of analyses; and (iii) parsing degrees of human and natural influences on connectivity and defining acceptable alterations. Multiscale analyses are most likely to identify dominant patterns of connections and disconnections, and the appropriate scale at which to focus conservation activities.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Fullerton, A.H.; Burnett, K.M.; Steel, E.A.; Flitcroft, R.L.; Pess, G.R.; Feist, B.E.; Torgersen, C.E.; Miller, D.J.; Sanderson, B.L. 2010. Hydrological connectivity for riverine fish: measurement challenges and research opportunities. Freshwater Biology. 55(11): 2215-2237.

    Keywords

    migratory fish, movement barriers, river network, spatial structure

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/38805