Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Jan Seibert; Jeffrey J. McDonnell
    Date: 2010
    Source: Hydrological Sciences Journal. 55(3): 316-332
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: View PDF  (3.98 MB)


    The effect of land-use or land-cover change on stream runoff dynamics is not fully understood. In many parts of the world, forest management is the major land-cover change agent. While the paired catchment approach has been the primary methodology used to quantify such effects, it is only possible for small headwater catchments where there is uniformity in precipitation inputs and catchment characteristics between the treatment and control catchments. This paper presents a model-based change-detection approach that includes model and parameter uncertainty as an alternative to the traditional paired-catchment method for larger catchments. We use the HBV model and data from the HJ Andrews Experimental Forest in Oregon, USA, to develop and test the approach on two small (<1 km2) headwater catchments (a 100% clear-cut and a control) and then apply the technique to the larger 62 km2 Lookout catchment. Three different approaches are used to detect changes in stream peak flows using: (a) calibration for a period before (or after) change and simulation of runoff that would have been observed without land-cover changes (reconstruction of runoff series); (b) comparison of calibrated parameter values for periods before and after a land-cover change; and (c) comparison of runoff predicted with parameter sets calibrated for periods before and after a land-cover change. Our proof-of-concept change detection modelling showed that peak flows increased in the clear-cut headwater catchment, relative to the headwater control catchment, and several parameter values in the model changed after the clear-cutting. Some minor changes were also detected in the control illustrating the problem of false detections. For the larger Lookout catchment, moderately increased peak flows were detected. Monte Carlo techniques used to quantify parameter uncertainty and compute confidence intervals in model results and parameter ranges showed rather wide distributions of model simulations. While this makes change detection more difficult, it also demonstrated the need to explicitly consider parameter uncertainty in the modelling approach to obtain reliable results.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Seibert, Jan; McDonnell, Jeffrey J. 2010. Land-cover impacts on streamflow: a change-detection modelling approach that incorporates parameter uncertainty. Hydrological Sciences Journal. 55(3): 316-332.


    change detection, forest hydrology, forest harvesting, HJ Andrews, HBV model

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page