Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Shyh-Chin ChenHaiganoush PreislerFrancis FujiokaJohn W. Benoit; John O. Roads
    Date: 2009
    Source: In: Proceedings of the third international symposium on fire economics, planning, and policy: common problems and approaches. Gen. Tech. Rep. PSW-GTR-227 (English). Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 57-69
    Publication Series: General Technical Report (GTR)
    Station: Pacific Southwest Research Station
    PDF: View PDF  (382.08 KB)

    Description

    The National Fire Danger Rating System (NFDRS) indices deduced from the monthly to seasonal predictions of a meteorological climate model at 50-km grid space from January 1998 through December 2003 were used in conjunction with a probability model to predict the expected number of fire occurrences and large fires over the U.S. West. The short-term climate forecasts are ongoing experimental products from the Experimental Climate Prediction Center at the Scripps Institution of Oceanography. The probability model uses nonparametric logistic regression with spline functions for evaluating relationships between covariates and probabilities of fires. The 2-meter relative humidity and the Forsberg fire weather index, along with NFDRS indices of the Keetch-Byram drought index and energy release, were previously found to produce more significant information for the observed big fire events than all the other stand-alone fire weather variables.

    Utilizing this previously determined regression relationship between historical fire information and the nowcast fire indices, these predicted indices were skillful in generating fire severity forecasts at monthly and seasonal time-scales. However, certain meteorological model biases, due to a known drying-up defect of the climate model, needed to be removed from the predicted indices before being used as input to the probability model. It was shown that the probability model using the bias-corrected fire danger indices outperformed the one with historic information only. The inter-annual fire frequency variability was predicted particularly well. This dynamical-statistical hybrid climate forecast application demonstrates a potential predictive capability (with specified precision) for the resulting economic impacts with a lead-time varying from a month to a season.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Chen, Shyh-Chin; Preisler, Haiganoush; Fujioka, Francis; Benoit, John W.; Roads, John O. 2009. Seasonal predictions for wildland fire severity. In: Proceedings of the third international symposium on fire economics, planning, and policy: common problems and approaches. Gen. Tech. Rep. PSW-GTR-227 (English). Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 57-69

    Keywords

    Fire severity, NFDRS, seasonal prediction, semi-parametric logistic

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/39063