Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Patrick M. James; Brian R. Sturtevant; Phil Townsend; Pete Wolter; Marie-Josee Fortin
    Date: 2011
    Source: Ecological Applications. 21(6): 2197-2209.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: Download Publication  (1.01 MB)


    Increases in the extent and severity of spruce budworm (Choristoneura fumiferana Clem.) outbreaks over the last century are thought to be the result of changes in forest structure due to forest management. A corollary of this hypothesis is that manipulations of forest structure and composition can be used to reduce future forest vulnerability. However, to what extent historical forest management has influenced current spatial patterns of spruce budworm host species is unknown. To identify landscape-scale spatial legacies of forest management in patterns of spruce budworm host species (i.e., Abies balsamea and Picea spp.), we analyzed remotely sensed forest data from the Border Lakes landscape of northern Minnesota and northwestern Ontario. Our study area contains three regions with different management histories: (1) fine-scale logging patterns in Minnesota, (2) coarse-scale logging patterns in Ontario, and (3) very limited logging history in the Boundary Waters Canoe Area and adjacent Quetico Provincial Park. We analyzed forest basal-area data using wavelets and null models to identify: (1) at which scales forest basal area is structured, (2) where those scales of pattern are significantly present, and (3) whether regions of local significance correspond to regional boundaries that separate the study area. Results indicate that spatial patterns in host basal area are created by nonstationary processes and that these processes are further constrained by lakes and wetlands. Wavelet analysis combined with significance testing revealed a bimodal distribution of scale-specific wavelet variance and separate zones of host species basal area that partially correspond with regional boundaries, particularly between Minnesota and the Wilderness region. This research represents one of the first comparisons of forest spatial structure in this region across an international border and presents a novel method of two-dimensional wavelet analysis that can be used to identify significant scale-specific structure in spatial data.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    James, Patrick M.; Sturtevant, Brian R.; Townsend, Phil; Wolter, Pete; Fortin, Marie-Josee. 2011. Two-dimensional wavelet analysis of spruce budworm host basal area in the Border Lakes landscape. Ecological Applications. 21(6): 2197-2209.


    Choristoneura fumiferana, forest management, forest structure and composition, landscape-scale patterns, logging patterns, MODWT, multi-temporal LANDSAT, remote sensing, spatial legacies, spatial null models, wavelet variance

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page