Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    A principal goal of seed germination modelling for wild species is to predict germination timing under fluctuating field conditions. We coupled our previously developed hydrothermal time, thermal and hydrothermal afterripening time, and hydration-dehydration models for dormancy loss and germination with field seed zone temperature and water potential measurements from early summer through autumn to develop predictions of germination timing for Bromus tectorum at a semi-arid site in north-central Utah, USA. Model predictions were tested with a validation dataset based on concomitant seed retrieval experiments in 2 years. Predictions were generally in agreement with observed field germination time courses, even though integration across multiple precipitation events was necessary. Success of the modelling effort hinged on two factors. First, we used a soil capacitance sensor that measured seed zone (5mm soil depth) water content accurately over a wide range. Second, simulations were built using physiologically based threshold models that can incorporate differences in germination timing for multiple germination fractions and for multiple stages of dormancy loss. Our results suggest that simulation models using hydrothermal time concepts can predict field germination phenology accurately. Seeds in this study integrated their experiences in a widely fluctuating environment in a manner consistent with the assumptions of hydrothermal time. Such threshold-based models also have the advantage of generality, as these concepts can be applied to many different species, environments and weather scenarios.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Meyer, Susan E.; Allen, Phil S. 2009. Predicting seed dormancy loss and germination timing for Bromus tectorum in a semi-arid environment using hydrothermal time models. Seed Science Research. 19: 225-239.


    Bromus tectorum, capacitance sensor, dormancy loss, hydrothermal time, seed zone water potential, thermal afterripening time

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page