Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Richard T. Conant; Michael Ryan; Goran I. Agren; Hannah E. Birge; Eric A. Davidson; Peter E. Eliasson; Sarah E. Evans; Serita D. Frey; Christian P. Giardina; Francesca M. Hopkins; Riitta Hyvonen; Miko U. F . Kirschbaum; Jocelyn M. Lavallee; Jens Leifeld; William J. Parton; Jessica Megan Steinweg; Matthew D. Wallenstein; J . A. Martin Wetterstedt; Mark A. Bradford
    Date: 2011
    Source: Global Change Biology. 17: 3392-3404.
    Publication Series: Scientific Journal (JRNL)
    PDF: Download Publication  (571.08 KB)


    The response of soil organic matter (OM) decomposition to increasing temperature is a critical aspect of ecosystem responses to global change. The impacts of climate warming on decomposition dynamics have not been resolved due to apparently contradictory results from field and lab experiments, most of which has focused on labile carbon with short turnover times. But the majority of total soil carbon stocks are comprised of organic carbon with turnover times of decades to centuries. Understanding the response of these carbon pools to climate change is essential for forecasting longer-term changes in soil carbon storage. Herein, we briefly synthesize information from recent studies that have been conducted using a wide variety of approaches. In our effort to understand research to-date, we derive a new conceptual model that explicitly identifies the processes controlling soil OM availability for decomposition and allows a more explicit description of the factors regulating OM decomposition under different circumstances. It explicitly defines resistance of soil OM to decomposition as being due either to its chemical conformation (quality) or its physico-chemical protection from decomposition. The former is embodied in the depolymerization process, the latter by adsorption/desorption and aggregate turnover. We hypothesize a strong role for variation in temperature sensitivity as a function of reaction rates for both. We conclude that important advances in understanding the temperature response of the processes that control substrate availability, depolymerization, microbial efficiency, and enzyme production will be needed to predict the fate of soil carbon stocks in a warmer world.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Conant, Richard T.; Ryan, Michael G.; Agren, Goran I.; Birge, Hannah E.; Davidson, Eric A.; Eliasson, Peter E.; Evans, Sarah E.; Frey, Serita D.; Giardina, Christian P.; Hopkins, Francesca M.; Hyvonen, Riitta; Kirschbaum, Miko U. F .; Lavallee, Jocelyn M.; Leifeld, Jens; Parton, William J.; Steinweg, Jessica Megan; Wallenstein, Matthew D.; Wetterstedt, J . A. Martin; Bradford, Mark A. 2011. Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward. Global Change Biology. 17: 3392-3404.


    decomposition, experiments, new conceptual model, review, soil carbon, temperature sensitivity

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page