Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): J. B. Gilman; C. Warneke; W. C. Kuster; P. D. Goldan; P. R. Veres; J. M. Roberts; J. A. de Gouw; I. R. Burling; R. J. Yokelson
    Date: 2010
    Source: American Geophysical Union. Fall Meeting: Abstract #A22A-03.
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (90.89 KB)


    A comprehensive suite of instruments were used to characterize volatile organic compounds (VOCs) and other trace gases (e.g., CO, CH4, NO2, etc.) emitted from controlled burns of various fuel types common to the Southeastern and Southwestern United States. These laboratory-based measurements were conducted in February 2009 at the U.S. Department of Agriculture’s Fire Sciences Laboratory in Missoula, Montana. An on-line GC-MS provided highly speciated VOC measurements of alkenes, alkanes, oxygenates, aromatics, biogenics, and nitrogen-containing compounds during the flaming or smoldering phases of replicate burns. The speciated GC-MS “grab” samples were integrated with fast-response gas-phase measurements (e.g., PTR-MS, PTR-IT-MS, NI-PT-CIMS, and FTIR) in order to determine VOC emission ratios and the fraction of identified vs. unidentifiable mass detected by PTR-MS. Emission ratios were used to calculate OH reactivity, which is a measure of potential ozone formation, as well as potential secondary organic aerosol (SOA) yields from the various fuel types. Small oxygenated VOCs had the highest emission ratios of the compounds observed. Alkenes dominated the VOC OH reactivity, which occasionally exceeded 1000 s-1. Calculated SOA yields from known precursors were dominated by aromatic VOCs, such as toluene, naphthalene (C10H8), and 1,3-benzenediol (C6H6O2, resorcinol). The contribution of several compounds not typically reported in ambient air measurements, such as substituted furans (C4H4O), pyrroles (C4H5N), and unsaturated C9 aromatics (C9H10), on OH reactivity and SOA yields will be discussed.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Gilman, J. B.; Warneke, C.; Kuster, W. C.; Goldan, P. D.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J. 2010. OH reactivity and potential SOA yields from volatile organic compounds and other trace gases measured in controlled laboratory biomass burns. American Geophysical Union. Fall Meeting: Abstract #A22A-03.


    biosphere/atmosphere interactions, troposphere, composition, chemistry

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page