Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Robert KeaneRachel Loehman
    Date: 2010
    Source: American Geophysical Union. Fall Meeting: Abstract #NH33B-06.
    Publication Series: Miscellaneous Publication
    PDF: View PDF  (92.12 KB)

    Description

    Climate changes are projected to profoundly influence vegetation patterns and community compositions, either directly through increased species mortality and shifts in species distributions, or indirectly through disturbance dynamics such as increased wildfire activity and extent, shifting fire regimes, and pathogenesis. High-elevation landscapes have been shown to be particularly sensitive to climatic change, and are likely to experience significant impacts under predicted future climate change conditions. Whitebark pine (Pinus albicaulis), a high-elevation five-needle pine species that is important for snowpack retention, resource provision, and other ecosystem services in alpine environments in the northern Rocky Mountains, is particularly sensitive to an interacting complex of disturbances - climatic change, altered fire regimes, white-pine blister rust, and mountain pine beetles - that have already caused major changes in species distribution and density. Further changes in abiotic and biotic conditions will likely pose additional threats to the success of this keystone alpine tree species. We used the mechanistic simulation model Fire-BGCv2 to assess potential interacting effects of climate changes, pathogens, and wildfire on the distribution and density of whitebark pine in a high-elevation watershed in Glacier National Park, Montana, USA. The FireBGCv2 modeling platform is uniquely structured to address questions of future species distribution in response to interacting disturbance agents; further, we integrated a range of potential future climate conditions derived from downscaled Global Circulation Models to examine multiple potential future climatic contexts. Our results show that the distribution of whitebark pine is severely reduced under potential future climates, and that increased fire frequency and severity resulting from warmer, drier conditions further reduces the presence of the species on the simulation landscape. Simulation model results highlight the sensitivity of whitebark pine to a complex suite of interacting disturbance agents, suggesting that conservation efforts must target these multiple threats. Furthermore, alternative predictive methods that do not account for multiple disturbance interactions may fail to capture the complex dynamics that drive whitebark pine distributions.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Keane, R. E.; Loehman, R. 2010. Understanding the role of wildland fire, insects, and disease in predicting climate change effects on whitebark pine: Simulating vegetation, disturbance, and climate dynamics in a northern Rocky Mountain landscape. American Geophysical Union. Fall Meeting: Abstract #NH33B-06.

    Keywords

    biogeochemical cycles, processes, modeling, ecosystems, structure and dynamics, global change

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/39331