Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Shishir P. S. Chundawat; Bryon S. Donohoe; Leonardo da Costa Sousa; Thomas ElderUmesh P. Agarwal; Fachuang Lu; John Ralph; Michael E. Himmel; Venkatesh Balan; Bruce E. Dale
    Date: 2011
    Source: Energy & Environmental Science 4:973-984
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: Download Publication  (831.42 KB)

    Description

    Deconstruction of lignocellulosic plant cell walls to fermentable sugars by thermochemical and/or biological means is impeded by several poorly understood ultrastructural and chemical barriers. A promising thermochemical pretreatment called ammonia fiber expansion (AFEX) overcomes the native recalcitrance of cell walls through subtle morphological and physicochemical changes that enhance cellulase accessibility without extracting lignin and hemicelluloses into separate liquid streams. Multiscale visualization and characterization of Zea mays (i.e., corn stover) cell walls were carried out by laser scanning confocal fluorescence microscopy (LSCM), Raman spectroscopy, atomic force microscopy (AFM), electron microscopy (SEM, TEM), nuclear magnetic resonance (NMR), and electron spectroscopy for chemical analysis (ESCA) to elucidate the mechanism of AFEX pretreatment. AFEX first dissolves, then extracts and, as the ammonia evaporates, redeposits cell wall decomposition products (e.g., amides, arabinoxylan oligomers, lignin-based phenolics) on outer cell wall surfaces. As a result, nanoporous tunnel-like networks, as visualized by 3D-electron tomography, are formed within the cell walls. We propose that this highly porous structure greatly enhances enzyme accessibility to embedded cellulosic microfibrils. The shape, size (10 to 1000 nm), and spatial distribution of the pores depended on their location within the cell wall and the pretreatment conditions used. Exposed pore surface area per unit AFEX pretreated cell wall volume, estimated via TEMtomogram image analysis, ranged between 0.005 and 0.05 nm2 per nm3. AFEX results in ultrastructural and physicochemical modifications within the cell wall that enhance enzymatic hydrolysis yield by 4–5 fold over that of untreated cell walls.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Chundawat, Shishir P. S.; Donohoe, Bryon S.; Sousa, Leonardo da Costa; Elder, Thomas; Agarwal, Umesh P.; Lu, Fachuang; Ralph, John; Himmel, Michael E.; Balan, Venkatesh; Dale, Bruce E. 2011. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy & Environmental Science 4:973-984.

    Cited

    Google Scholar

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/39431