Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Steven M. Wondzell
    Date: 2011
    Source: Hydrological Processes. doi:10.1002/hyp.8119: 8 p
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: View PDF  (1.11 MB)

    Description

    Many hyporheic papers state that the hyporheic zone is a critical component of stream ecosystems, and many of these papers focus on the biogeochemical effects of the hyporheic zone on stream solute loads. However, efforts to show such relationships have proven elusive, prompting several questions: Are the effects of the hyporheic zone on stream ecosystems so highly variable in place and time (or among streams) that a consistent relationship should not be expected? Or, is the hyporheic zone less important in stream ecosystems than is commonly expected? These questions were examined using data from existing groundwater modelling studies of hyporheic exchange flow at five sites in a fifth-order, mountainous stream network. The size of exchange flows, relative to stream discharge, was large only in very small streams at low discharge. These data show that biogeochemical processes in the hyporheic zone of small streams can substantially influence the stream’s solute load, but these processes become hydrologically constrained at high discharge or in larger streams and rivers. The hyporheic zone may influence stream ecosystems in many ways, however, not just through biogeochemical processes that alter stream solute loads. For example, the hyporheic zone represents a unique habitat for some organisms, with patterns and amounts of upwelling and downwelling water determining the underlying physiochemical environment of the hyporheic zone. Similarly, hyporheic exchange creates distinct patches of downwelling and upwelling. Upwelling environments are of special interest, because upwelling water has the potential to be thermally or chemically distinct from stream water. Consequently, micro-environmental patches created by hyporheic exchange flows are likely to be important to biological and ecosystem processes, even if their impact on stream solute loads is small.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Wondzell, Steven M. 2011. The role of the hyporheic zone across stream networks. Hydrological Processes. doi:10.1002/hyp.8119: 8.

    Keywords

    hyporheic exchange flows, stream discharge, stream networks, flow exceedance probability, watershed area, hyporheic potential

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page