Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Richard Guyette; Michael Stambaugh; Daniel Dey
    Date: 2011
    Source: JFSP Fire Science Brief. 142: 1-6.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (637.49 KB)


    Tree-ring dated fire scars provide long-term records of fire frequency, giving land managers valuable baseline information about the fire regimes that existed prior to Euro-American settlement. However, for the East, fire history data prove difficult to acquire because the generally moister climate of the region causes rapid decay of wood. In an endeavor to fill data gaps, the research team collected fire scar data in the states of Alabama, Louisiana, Kentucky, Tennessee, Iowa, Wisconsin, and Michigan. The second part of the project used this newly collected fire history data combined with previously collected records to parameterize and calibrate a continental fire frequency model based on climate. The purpose of this model is to aid in understanding how climate constrains and drives fire regimes across the U.S. Large temporal and spatial gaps exist in our knowledge of continental fire regimes, but the new Physical Chemistry Fire Frequency Model (PC2FM) can assign a fire frequency to any square kilometer in North America. Even in places where there are no fire history data, the model can estimate with high precision how frequently fires occurred on average and what the upper and lower fire frequency limits were. The model's predictor variables were selected in part based on physical chemistry because, in its most basic form, fire is a chemical reaction. This model addresses how chemical reactions are controlled by temperature and precipitation, and how these variables combine to control combustion reactions. While previously developed fire regime models are typically based on specific vegetation communities, this model relies on climate variables as predictors. A benefit of a vegetation-free model is the applicability of the model to make predictions of fire frequency in situations where vegetation data are unavailable, not of primary interest, or when current vegetation might differ from historical or future. The research team's goal was to develop a climate-based model that can bring together and analyze disparate fire history data for: (1) a broad-scale characterization of past and future fire regimes and (2) assessing fire regime sensitivity to changes in climate.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Guyette, Richard; Stambaugh, Michael; Dey, Daniel. 2011. A project in two parts: Developing fire histories for the eastern US and creating a climate-based continental fire frequency model to fill data gaps. JFSP Fire Science Brief. 142: 1-6.

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page