Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): D.M. Amatya; K.R. Douglas-Mankin; T.M. Williams; R.W. Skaggs; J.E. Nettles
    Date: 2011
    Source: American Society of Agricultural and Biological Engineers (ASABE) 54(6):2049-2056
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: Download Publication  (87.2 KB)


    Forests are an integral component of the landscape, and maintaining their functional integrity is fundamental for the sustainability of ecosystems and societies alike. Tools, innovations, and practices, analogous to those developed to improve agricultural production and quantify environmental impacts, are needed to ensure the sustainability of these forested landscapes as well as the ecosystem goods and services they produce. This article introduces ten technical articles on critical ecohydrologic processes, protection and restoration, and the effects of management practices on the hydrology and water quality of forests and forested wetlands, using both monitoring and modeling approaches. Prepared by experts in forest science, forest and agricultural hydrology, and water management, the studies reported in this special collection are concentrated in the Atlantic Coastal plain and focus on forests with shallow water tables. Experimental studies describe the effects of riparian vegetation harvest, human disturbance, and future climatic change on groundwater, the significance of emergent vegetation after harvest, and long�]term hydrologic water balance of a managed pine forest. Modeling studies use the SWAT model to predict streamflow dynamics of a less disturbed, coastal forested watershed, and DRAINMOD to determine the impacts of minor silvicultural drainage on wetland hydrology and to improve wetland restoration. Finally, a study describes potential uncertainties associated with infrequent water sampling of nutrient loads from drained forested watersheds. This introductory article summarizes these studies of shallow water table forests and relates them to the broader field of forest hydrology, including its challenges and opportunities, while identifying pressing issues of land use and climate change. The results from these studies should help guide management and restoration of forest wetland ecosystems and direct future forest hydrologic research, including research in large prior converted agricultural landscapes.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Amatya, D.M.; Douglas-Mankin, K.R.; Williams, T.M.; Skaggs, R.W.; Nettles, J.E. 2011. Advances in forest hydrology: challenges and opportunities. American Society of Agricultural and Biological Engineers (ASABE) 54(6):2049-2056.


    Agricultural landscape, Best management practices, DRAINMOD, Evapotranspiration, Forested wetlands, Hydrologic processes, Nutrient loading, Riparian buffer, Shallow water table, SWAT

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page