Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Avian biodiversity is threatened, and in order to prioritize limited conservation resources and conduct effective conservation planning a better understanding of avian species richness patterns is needed. The use of image texture measures, as a proxy for the spatial structure of land cover and vegetation, has proven useful in explaining patterns of avian abundance and species richness. However, prior studies that modeled habitat with texture measures were conducted over small geographical extents and typically focused on a single habitat type. Our goal was to evaluate the performance of texture measures over broad spatial extents and across multiple habitat types with varying levels of vertical habitat structure. We calculated a suite of texture measures from 114 Landsat images over a study area of 1,498,000 km2 in the Midwestern United States, which included habitats ranging from grassland to forest. Avian species richness was modeled for several functional guilds as a function of image texture. We subsequently compared the explanatory power of texture-only models with models fitted using landscape composition metrics derived from the National Land Cover Dataset, as well as models fitted using both texture and composition metrics. Measures of image texture were effective in modeling spatial patterns of avian species richness in multiple habitat types, explaining up to 51% of the variability in species richness of permanent resident birds. In comparison, landscape composition metrics explained up to 56% of the variability in permanent resident species richness. In the most heavily forested ecoregion, texture-measures outperformed landscape metrics, and the two types of measurements were complementary in multivariate models. However, in two out of three ecoregions examined, landscape composition metrics consistently performed slightly better than texture measures, and the variance explained by the two types of measures overlapped considerably. These results show that image texture measures derived from satellite imagery can be an important tool for modeling patterns of avian species richness at broad spatial extents, and thus assist in conservation planning. However, texture measures were slightly inferior to landscape composition metrics in about three-fourths of our models. Therefore texture measures are best considered in conjunction with landscape metrics (if available) and are best used when they show explanatory ability that is complementarity to landscape metrics.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Culbert, Patrick D.; Radeloff, Volker C.; St-Louis, Veronique; Flather, Curtis H.; Rittenhouse, Chadwick D.; Albright, Thomas P.; Pidgeon, Anna M. 2012. Modeling broad-scale patterns of avian species richness across the Midwestern United States with measures of satellite image texture. Remote Sensing of Environment. 118: 140-150.


    Google Scholar


    biodiversity, birds, species richness, habitat structure, texture, multiple linear regression, Landsat, NLCD

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page