Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Numerical and three-dimensional finite element models were developed to improve understanding of major factors affecting hygroelastic wood properties. Effects of chemical composition, microfibril angle, crystallinity, structure of microfibrils, moisture content, and hydrophilicity of the cell wall were included in the model. Wood from wild-type and decreased-lignin transgenic aspen (Populus tremuloides Michx.) was used for experimental validation of the computer model. The model was able to predict longitudinal elastic modulus of microfibrils and woody cell walls. The difference in longitudinal elastic properties between wild-type and genetically modified aspen wood was predicted well only when additional softening of hemicelluloses and amorphous cellulose of transgenic aspen was included in the model.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Horvath, Laszlo; Peralta, Perry; Peszlen, Ilona; Csoka, Levente; Horvath, Balazs; Jakes, Joseph. 2012. Modeling hygroelastic properties of genetically modified aspen. Wood and Fiber Science. 44(1): 22-35.


    Cell wall, computer modeling, hydrophilicity, lignin, transgenic aspen

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page