Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Walter C. ShortleKevin T. Smith; Jody Jellison; Jonathan S. Schilling
    Date: 2012
    Source: Canadian Journal of Forest Research. 42: 1015-1024.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (926.92 KB)


    The depletion of root-available Ca in northern forest soils exposed to decades of increased acid deposition adversely affects forest health and productivity. Laboratory studies indicated the potential of wood-decay fungi to restore lost Ca. This study presents changes in concentration of Ca, Mg, and K in sapwood of red spruce (Picea rubens Sarg.), red maple (Acer rubrum L.), eastern hemlock (Tsuga canadensis (L.) Carrière), and paper birch (Betula papyrifera Marshall) during the decay process at two experimental forests for 12 years and to compare concentrations of exchangeable Ca, Mg, and Al in decayed wood residues at 10 and 12 years with those in the forest floor. Significant loss of mass indicated by decreasing wood density occurred after 2-8 years in conifers and after only 2 years in hardwoods. A significant gain in wood K was observed at 2 years followed by a significant loss at 8 years. A negligible gain in Ca concentration occurred at 2 years and a substantial gain at 8 years. Observed changes in Mg concentration were variable. No significant difference in exchangeable Ca concentration was observed between decayed wood residue of spruce and maple and the forest floor. However, decayed wood residue had a much lower Al concentration and molar Al/Ca ratio, a condition characteristic of sites with high root-available Ca.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Shortle, Walter C.; Smith, Kevin T.; Jellison, Jody; Schilling, Jonathan S. 2012. Potential of decaying wood to restore root-available base cations in depleted forest soils. Canadian Journal of Forest Research. 42: 1015-1024.


    Google Scholar

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page