Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Benjamin A. Crabb; James A. Powell; Barbara J. Bentz
    Date: 2012
    Source: Res. Pap. RMRS-RP-93WWW. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 43 p.
    Publication Series: Research Paper (RP)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (3.7 MB)


    Forecasting spatial patterns of mountain pine beetle (MPB) population success requires spatially explicit information on host pine distribution. We developed a means of producing spatially explicit datasets of pine density at 30-m resolution using existing geospatial datasets of vegetation composition and structure. Because our ultimate goal is to model MPB population success, three study areas in the western United States that have experienced recent MPB outbreaks were used for evaluation. Pine density estimates for each study area were compared to measures of cumulative MPB-caused pine mortality summarized from annual Aerial Detection Surveys (ADS). ADS data provide spatial and temporal representations of MPB-caused pine mortality collected by observers in fixed wing aircraft and are the most readily available estimates of landscape-scale impacts of MPB. Regression analyses using LANDFIRE ecological systems classifications (EVTs) as units of analysis showed that the best pine density estimates explained 75 to 98% of cumulative MPB-caused tree mortality. LANDFIRE EVTs, which provide an index of the plant communities growing in a particular 30-m cell, effectively delineate distinct vegetation types that are meaningful suitability indicators for MPB-caused tree mortality. Our analyses suggested that available geospatial vegetation datasets derived from field data and remotely sensed imagery are useful for producing spatially explicit measures of pine density for use in landscape-level modeling of MPB dynamics.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Crabb, Benjamin A.; Powell, James A.; Bentz, Barbara J. 2012. Development and assessment of 30-meter pine density maps for landscape-level modeling of mountain pine beetle dynamics. Res. Pap. RMRS-RP-93WWW. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 43 p.


    Google Scholar


    mountain pine beetle, pine density maps, aerial detection survey, LANDFIRE

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page