Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Keith C. Clarke; James A. Brass; Phillip J. Riggan
    Date: 1994
    Source: Photogrammetric Engineering and Remote Sensing. 60(11): 1355-1367
    Publication Series: Scientific Journal (JRNL)
    PDF: View PDF  (3.39 MB)

    Description

    We propose a new model to predict the spatial and temporal behavior of wildfires. Fire spread and intensity were simulated using a cellular automaton model. Monte Carlo techniques were used to provide fire risk probabilities for areas where fuel loadings and topography are known. The model assumes predetermined or measurable environmental variables such as wind direction and magnitude, relative humidity, fuel moisture content, and air temperature. Implementation of the model allows the linking of fire monitoring using remotely sensed data, potentially in real time, to rapid simulations of predicted fire behavior. Calibration of the model is based on thermal infrared remotely sensed imagery of a test burn during 1986 in the San Dimas experimental forest. The model and its various implementations show distinct promise for real-time fire management and fire risk planning.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Clarke, Keith C.; Brass, James A.; Riggan, Phillip J. 1994. A cellular automaton model of wildfire propagation and extinction. Photogrammetric Engineering and Remote Sensing. 60(11): 1355-1367.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page