Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Pyrolysis kinetics analysis of extractives, holocellulose, and lignin in the solid redwood over the entire heating regime was possible by specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for the thin specimen with tiny thermocouples, the methane ring burner with stainless-steel mesh above cone heater, and the water vapor sensor in heated gas sampling lines. Specialized numerical deconvolutions were applied to the oxygen and water vapor analyzer signals to synchronize with the rapid-responding CO/CO2 analyzer signals. From this data, the mass flow rates of carbon, hydrogen, and oxygen within the wood volatiles as function of time were obtained, which allowed deducing the mass flow rate of significant molecules of wood volatiles that have their origins in the wood constituents of extractives, holocellulose, and lignin. Accurate analytical solution of pyrolysis kinetics of appropriate competitive reactions that continuously conserved carbon, hydrogen, and oxygen mass flow rates was obtained for piecewise exponentially-shaped, spatially uniform temperature within the specimen as implemented conveniently in MS Excel spreadsheet.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Dietenberger, Mark. 2012. Pyrolysis kinetics and combustion of thin wood by an advanced cone caorimetry test method. Journal of Thermal Analysis and Calorimetry DOI 10.1007/s10973-012-2474-4


    Google Scholar


    Wood pyrolysis kinetics, modified cone calorimetry, Evolved gas analysis

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page