Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Michael K. Crosby; Zhaofei FanMartin A. SpetichTheodor D. Leininger
    Date: 2012
    Source: In: Merry, K.; Bettinger, P.; Lowe, T.; Nibbelink, N.; Siry, J., eds. Proceedings of the 8th Southern Forestry and Natural Resources GIS Conference (2012). Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA.
    Publication Series: Paper (invited, offered, keynote)
    Station: Southern Research Station
    PDF: View PDF  (357.87 KB)

    Description

    Oak decline poses a substantial threat to forest health in the Ozark Highlands of northern Arkansas and southern Missouri, where coupled with diseases and insect infestations, it has damaged large tracts of forest lands. Forest Health Monitoring (FHM) crown health indicators (e.g. crown dieback, etc.), collected by the U.S. Forest Service’s Forest Inventory and Analysis (FIA) program, provide a method of assessing forest health. These data were obtained for the Ozark Highlands for the years 2003-2007; and levels of red oak crown dieback were calculated at the plot level along with basal area and age. Also, calculations of Normalized Difference Moisture Index (NDMI) were derived from Landsat TM imagery, annual temperature range was calculated from mean temperature data, and percent slope was calculated from a Digital Elevation Model. Quantile regression analysis was then utilized to determine the relationship between the predictor variables and red oak dieback at various quantiles of dieback. Red oak crown dieback has increased throughout the period since a low in 2004. The quantile regression analysis also indicated a difference in the relationship between the variables from linear regression estimates at higher quantiles (e.g. 90th-95th). This indicates that data at the upper tail of the distribution may point to causal relationships between variables. NDMI has the most significant relationship with red oak crown dieback although additional research is needed to determine if there is any interaction between this and other variables.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Crosby, Michael K.; Fan, Zhaofei; Spetich, Martin A.; Leininger, Theodor D. 2012. Remote Sensing of Forest Health Indicators for Assessing Change in Forest Health. In: Merry, K.; Bettinger, P.; Lowe, T.; Nibbelink, N.; Siry, J., eds. Proceedings of the 8th Southern Forestry and Natural Resources GIS Conference (2012). Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA.

    Keywords

    Crown dieback, Ozarks, quantile regression

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/41280