Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Jerry R. Miller; Mark L. Lord; Lionel F. Villarroel; Dru Germanoski; Jeanne C. Chambers
    Date: 2012
    Source: Geomorphology. 139-140: 384-402.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: View PDF  (2.4 MB)


    The drainage network within upland watersheds in central Nevada can be subdivided into distinct zones each dominated by a unique set of processes on the basis of valley form, the geological materials that comprise the valley floor, and the presence or absence of surficial channels. On hillslopes, the type and structure (frequency, length, and spatial arrangement) of these process zones is related to the lithology and weathering characteristics of the underlying bedrock. Process zones dominated by sediment accumulation, storage, and groundwater recharge are associated with less resistant rocks that weather into abundant but relatively small particles. Sediment transport and runoff-dominated zones are associated with resistant, sparsely fractured rocks that produce limited but larger clasts. The type and structure of process zones along axial valleys depend on the characteristics of the process zones on the hillslopes. Numerous sediment storage-dominated reaches leads to a relatively high number of unincised fans located at the mouth of tributaries along the axial valleys and to frequent and lengthy unincised valley segments, both of which disconnect large sections of the drainage basin from channelized flows. In contrast, a relatively high density of transport-dominated process zones leads downstream to the incision of side-valley fans and axial valley deposits as well as a high degree of basin connectivity (defined by the integration of surficial channels). Connectivity also is related to the lithology of the underlying bedrock, with higher degrees of connectivity being associated with volcanic rocks that presumably yield high rates of runoff. Lower levels of connectivity are associated most frequently with extensively fractured, locally permeable sedimentary and metamorphic rock assemblages. Thus, basins underlain by volcanic rocks appear to be more sensitive to incision and produce more dynamic channels in terms of the rate of channel/valley modification than those underlain by other lithologies.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Miller, Jerry R.; Lord, Mark L.; Villarroel, Lionel F.; Germanoski, Dru; Chambers, Jeanne C. 2012. Structural organization of process zones in upland watersheds of central Nevada and its influence on basin connectivity, dynamics, and wet meadow complexes. Geomorphology. 139-140: 384-402.


    Google Scholar


    fluvial geomorphology, sensitivity, connectivity, groundwater recharge, Great Basin

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page