Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    The effects of incorporating hyperbranched polymers (HBPs) and different nanoclays [Cloisite® 30B and halloysite nanotubes (HNT)] on the mechanical, morphological, and thermal properties of solid and microcellular poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) were investigated. According to the X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses, Cloisite 30B exhibited a combination of exfoliation and heterogeneous intercalation structure for both solid and microcellular PHBV-12% HBP-2% Cloisite 30B nanocomposites. TEM images indicated that HNTs were uniformly dispersed throughout the PHBV matrix. The addition of 2% nanoclays improved the thermal stability of the resulting nanocomposites. The addition of HBP+poly(maleic anhydride-alt-1-octadecene) (PA), Cloisite 30B, and HNT reduced the average cell size and increased the cell density of the microcellular components. The addition of (HBP+PA), Cloisite 30B, and HNT also increased the degree of crystallinity for both solid and microcellular components in comparison with neat PHBV. Also, with the addition of 12% (HBP+PA), the area under the tan-δ curve, specific toughness, and strain-at-break of the PHBV–HBP nanocomposite increased significantly for both solid and microcellular specimens, whereas the storage modulus, specific Young’s modulus, and specific tensile strength decreased. The addition of 2% nanoclays into the PHBV–HBP nanocomposites improved the storage modulus, specific Young’s modulus, and specific tensile strength of the PHBV–HBP–nanoclay-based nanocomposites, but they were still lower than those of the neat PHBV.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Javadi, Alireza; Srithep,Yottha; Pilla, Srikanth; Clemons, Craig C.; Gong, Shaoqin; Turng, Lih-Sheng. 2011. Microcellular poly(hydroxybutyrate-co-hydroxyvalerate)-hyperbranched polymer-nanoclay nanocomposites. Polymer Engineering and Science. 51: 1815-1826.


    Google Scholar


    Nanoclay, Biopolymer, HPBV, Microcellular, hyperbranched polymer

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page