Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Anna M. Jensen; Emile S. Gardiner; Kevin C. Vaughn
    Date: 2012
    Source: Environmental and Experimental Botany (78):25-32
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: Download Publication  (504.24 KB)


    High developmental plasticity at the seedling-level during acclimation to the light environment may be an important determinant of seedling establishment and growth in temperate broadleaf forests, especially in dense understories where spatial light availability can vary greatly. Pedunculate oak (Quercus robur L.) seedlings were raised beneath a range of artificial light environments (high light, partial high light and low light) to examine morphological and photosynthetic acclimation to vertically stratified light availability. Acclimation observed at the seedling level included changes in proportional distribution of biomass and leaf area ratio to enhance either light gathering under low light availability or reduction of moisture stress under high light availability. Seedling-level acclimation was partially driven by plasticity at the flush level, but plasticity of traits determining flush morphology, such as leaf number, area, and mass, was largely controlled during bud formation rather than during shoot development. Therefore, flush-level acclimation was restricted when shoots elongated from a shaded environment into a high light environment. In contrast, traits influencing leaf-level acclimation, such as leaf thickness, specific leaf area, and pigment concentrations appeared to be driven primarily by the prevailing light environment during leaf development. The plastic response in leaf traits to light environments during shoot development enabled immediate acclimation of photosynthetic capacity to the prevailing light environment. In conclusion, oak seedlings displayed a large phenotypical plasticity on multiple levels that maximized whole seedling performance.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Jensen, Anna M.; Gardiner, Emile S.; Vaughn, Kevin C. 2012. High-light acclimation in Quercus robur L. seedlings upon over-topped a shaded environment. Environmental and Experimental Botany (78):25-32


    Morphological plasticity, Vegetative partitioning, Shade avoidance, Irradiance, Woody sapling, Photosynthesis

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page