Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Gionata Scalcinati; Jose´ Manuel Otero; Jennifer R.H. Van Vleet; Thomas W. Jeffries; Lisbeth Olsson; Jens Nielsen
    Date: 2012
    Source: FEMS Yeast Res (2012) pp. 1–16; 2012.
    Publication Series: Scientific Journal (JRNL)
    Station: Forest Products Laboratory
    PDF: View PDF  (695.34 KB)

    Description

    Industrial biotechnology aims to develop robust microbial cell factories, such as , to produce an array of added value chemicals presently dominated by petrochemical processes. Xylose is the second most abundant monosaccharide after glucose and the most prevalent pentose sugar found in lignocelluloses. Significant research efforts have focused on the metabolic engineering of S. cerevisiae for fast and efficient xylose utilization. This study aims to metabolically engineer S. cerevisiae, such that it can consume xylose as the exclusive substrate while maximizing carbon flux to biomass production. Such a platform may then be enhanced with complementary metabolic engineering strategies that couple biomass production with high value-added chemical. Saccharomyces cerevisiae, expressing xylose reductase, xylitol dehydrogenase and xylulose kinase, from the native xylose-metabolizing yeast Pichia stipitis, was constructed, followed by a directed evolution strategy to improve xylose utilization rates. The resulting S. cerevisiae strain was capable of rapid growth and fast xylose consumption producing only biomass and negligible amount of byproducts. Transcriptional profiling of this strain was employed to further elucidate the observed physiology confirms a strongly up-regulated glyoxylate pathway enabling respiratory metabolism. The resulting strain is a desirable platform for the industrial production of biomass-related products using xylose as a sole carbon source.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Scalcinati, Gionata; Otero, Jose´ Manuel; Van Vleet, Jennifer R.H.; Jeffries, Thomas W.; Olsson, Lisbeth; Nielsen, Jens. 2012. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Research. pp. 1–16. doi: 10.1111/j.1567-1364.2012.00808.x.

    Cited

    Google Scholar

    Keywords

    directed evolution, metabolic engineering, xylose, Saccharomyces cerevisiae, transcriptomics

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/41804