Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Tropical forests play a major role in regulating global carbon (C) fluxes and stocks, and even small changes to C cycling in this productive biome could dramatically affect atmospheric carbon dioxide (CO2) concentrations. Temperature is expected to increase over all land surfaces in the future, yet we have a surprisingly poor understanding of how tropical forests will respond to this significant climatic change. Here we present a contemporary synthesis of the existing data and what they suggest about how tropical forests will respond to increasing temperatures. Our goals were to: (i) determine whether there is enough evidence to support the conclusion that increased temperature will affect tropical forest C balance; (ii) if there is sufficient evidence, determine what direction this effect will take; and, (iii) establish what steps should to be taken to resolve the uncertainties surrounding tropical forest responses to increasing temperatures. We approach these questions from a mass-balance perspective and therefore focus primarily on the effects of temperature on inputs and outputs of C, spanning microbial- to ecosystem-scale responses. We found that, while there is the strong potential for temperature to affect processes related to C cycling and storage in tropical forests, a notable lack of data combined with the physical, biological and chemical diversity of the forests themselves make it difficult to resolve this issue with certainty. We suggest a variety of experimental approaches that could help elucidate how tropical forests will respond to warming, including large-scale in situ manipulation experiments, longer term field experiments, the incorporation of a range of scales in the investigation of warming effects (both spatial and temporal), as well as the inclusion of a diversity of tropical forest sites. Finally, we highlight areas of tropical forest research where notably few data are available, including temperature effects on: nutrient cycling, heterotrophic versus autotrophic respiration, thermal acclimation versus substrate limitation of plant and microbial communities, below-ground C allocation, species composition (plant and microbial), and the hydraulic architecture of roots. Whether or not tropical forests will become a source or a sink of C in a warmer world remains highly uncertain. Given the importance of these ecosystems to the global C budget, resolving this uncertainty is a primary research priority.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Wood, Tana E.; Cavaleri, Molly A.; Reed, Sasha C. 2012. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes. Biological Reviews. doi: 10.1111/j.1469-185X.2012.00232.x

    Cited

    Google Scholar

    Keywords

    biogeochemical cycling, carbon flux, carbon stocks, climate change, ecosystem processes, global warming, temperature, temperature threshold, tipping point, tropical forest

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/41962