Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): D. Medvigy; K.L. ClarkN.S. Skowronski; K.V.R. Schäfer
    Date: 2012
    Source: Environmental Research Letters. 7(4): 045703.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (439.71 KB)

    Description

    Many temperate and boreal forests are subject to insect epidemics. In the eastern US, over 41 million meters squared of tree basal area are thought to be at risk of gypsy moth defoliation. However, the decadal-to-century scale implications of defoliation events for ecosystem carbon dynamics are not well understood. In this study, the effects of defoliation intensity, periodicity and spatial pattern on the carbon cycle are investigated in a set of idealized model simulations. A mechanistic terrestrial biosphere model, ecosystem demography model 2, is driven with observations from a xeric oak-pine forest located in the New Jersey Pine Barrens. Simulations indicate that net ecosystem productivity (equal to photosynthesis minus respiration) decreases linearly with increasing defoliation intensity. However, because of interactions between defoliation and drought effects, aboveground biomass exhibits a nonlinear decrease with increasing defoliation intensity. The ecosystem responds strongly with both reduced productivity and biomass loss when defoliation periodicity varies from 5 to 15 yr, but exhibits a relatively weak response when defoliation periodicity varies from 15 to 60 yr. Simulations of spatially heterogeneous defoliation resulted in markedly smaller carbon stocks than simulations with spatially homogeneous defoliation. These results show that gypsy moth defoliation has a large effect on oak-pine forest biomass dynamics, functioning and its capacity to act as a carbon sink.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Medvigy, D.; Clark, K.L.; Skowronski, N.S.; Schäfer, K.V.R. 2012. Simulated impacts of insect defoliation on forest carbon dynamics. Environmental Research Letters. 7(4): 1-9. Doi:10.1088/1748-9326/7//4/045703.

    Cited

    Google Scholar

    Keywords

    defoliation, carbon budget, New Jersey Pine Barrens, ecosystem demography model, gypsy moth

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/42273