Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): W. J. Massman
    Date: 2012
    Source: Water Resources Research. 48: W10548.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (552.94 KB)


    Heating any soil during a sufficiently intense wildfire or prescribed burn can alter it irreversibly, causing many significant, long-term biological, chemical, and hydrological effects. Given the climate-change-driven increasing probability of wildfires and the increasing use of prescribed burns by land managers, it is important to better understand the dynamics of the coupled heat and moisture transport in soil during these extreme heating events. Furthermore, improved understanding and modeling of heat and mass transport during extreme conditions should provide insights into the associated transport mechanisms under more normal conditions. The present study describes a numerical model developed to simulate soil heat and moisture transport during fires where the surface heating often ranges between 10,000 and 100,000 W m-2 for several minutes to several hours. Basically, the model extends methods commonly used to model coupled heat flow and moisture evaporation at ambient conditions into regions of extreme dryness and heat. But it also incorporates some infrequently used formulations for temperature dependencies of the soil specific heat, thermal conductivity, and the water retention curve, as well as advective effects due to the large changes in volume that occur when liquid water is rapidly volatilized. Model performance is tested against laboratory measurements of soil temperature and moisture changes at several depths during controlled heating events. Qualitatively, the model agrees with the laboratory observations, namely, it simulates an increase in soil moisture ahead of the drying front (due to the condensation of evaporated soil water at the front) and a hiatus in the soil temperature rise during the strongly evaporative stage of the soil drying. Nevertheless, it is shown that the model is incapable of producing a physically realistic solution because it does not (and, in fact, cannot) represent the relationship between soil water potential and soil moisture at extremely low soil moisture contents (i.e., residual or bound water: < 0.01 m3 m 3, for example). Diagnosing the model's performance yields important insights into how to make progress on modeling soil evaporation and heating under conditions of high temperatures and very low soil moisture content.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Massman, W. J. 2012. Modeling soil heating and moisture transport under extreme conditions: Forest fires and slash pile burns. Water Resources Research. 48: W10548.


    Google Scholar


    soil advective velocity, soil evaporation, soil moisture potential, soil water retention curve

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page