Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Becky K. KernsMiles A. Hemstrom; David Conklin; Gabriel I. Yospin; Bart Johnson; Dominique Bachelet; Scott Bridgham
    Date: 2012
    Source: In: Kerns, Becky K.; Shlisky, Ayn J.; Daniel, Colin J., tech. eds. Proceedings of the First Landscape State-and-Transition Simulation Modeling Conference, June 14–16, 2011, Portland, Oregon. Gen. Tech. Rep. PNW-GTR-869. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 161-172.
    Publication Series: General Technical Report (GTR)
    Station: Pacific Northwest Research Station
    PDF: Download Publication  (307.94 KB)

    Description

    Understanding landscape vegetation dynamics often involves the use of scientifically-based modeling tools that are capable of testing alternative management scenarios given complex ecological, management, and social conditions. State-and-transition simulation model (STSM) frameworks and software such as PATH and VDDT are commonly used tools that simulate how landscapes might look and function in the future. Until recently, however, STSMs did not explicitly include climate change considerations. Yet the structure of STSMs makes them highly conducive to the incorporation of any probabilistic phenomenon. The central task in making a STSM climate-sensitive is describing the relevant processes in terms of probabilistic transitions. We discuss four different approaches we have implemented to inform climate-induced changes in vegetation and disturbance probabilities in STSMs using the dynamic global vegetation model MC1. These approaches are based on our work in several landscapes in the western United States using different modeling frameworks. Developing STSMs that consider future climate change will greatly broaden their utility, allowing managers and others to explore the roles of various processes and agents of change in landscape-level vegetation dynamics. However, numerous caveats exist. Regardless of how STSMs are made climate-sensitive, they neither simulate plant physiological responses directly nor predict landscape states by simulating landscape processes mechanistically. They are empirical models that reflect the current understanding of system properties and processes, help organize state-of-the-art knowledge and information, and serve as tools for quickly assessing the potential ramifications of management strategies. As such, they highlight the need for new research, while providing projections based on the best available information.

    Publication Notes

    • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Kerns, Becky K.; Hemstrom, Miles A.; Conklin, David; Yospin, Gabriel I.; Johnson, Bart; Bachelet, Dominique; Bridgham, Scott. 2012. Approaches to incorporating climate change effects in state and transition simulation models of vegetation. In: Kerns, Becky K.; Shlisky, Ayn J.; Daniel, Colin J., tech. eds. Proceedings of the First Landscape State-and-Transition Simulation Modeling Conference, June 14–16, 2011, Portland, Oregon. Gen. Tech. Rep. PNW-GTR-869. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 161-172.

    Keywords

    climate change, coupled models, dynamic global vegetation models, state-and-transition simulation model, vegetation dynamics.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/42576