Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Hans-Erik Andersen; Strunk Jacob; Hailemariam Temesgen; Donald Atwood; Ken Winterberger
    Date: 2012
    Source: Canadian Journal of Remote Sensing. 37(6): 596-611
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: Download Publication  (2.08 MB)


    The emergence of a new generation of remote sensing and geopositioning technologies, as well as increased capabilities in image processing, computing, and inferential techniques, have enabled the development and implementation of increasingly efficient and cost-effective multilevel sampling designs for forest inventory. In this paper, we (i) describe the conceptual basis of multilevel sampling, (ii) provide a detailed review of several previously implemented multilevel inventory designs, (iii) describe several important technical considerations that can influence the efficiency of a multilevel sampling design, and (iv) demonstrate the application of a modern multilevel sampling approach for estimating the forest biomass resources in a remote area of interior Alaska. This approach utilized a combination of ground plots, lidar strip sampling, satellite imagery (multispectral and radar), and classified land cover information. The variability in the total biomass estimate was assessed using a bootstrapping approach. The results indicated only marginal improvement in the precision of the total biomass estimate when the lidar sample was post-stratified using the classified land cover layer (reduction in relative standard error from 7.3% to 7.0%), whereas there was a substantial improvement in the precision when the estimate was based on the biomass map derived via nearest-neighbor imputation (reduction in relative standard error from 7.3% to 5.1%).

    Publication Notes

    • Visit PNW's Publication Request Page to request a hard copy of this publication.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Andersen, Hans-Erik; Jacob, Strunk; Temesgen, Hailemariam; Atwood, Donald; Winterberger, Ken. 2012. Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska. Canadian Journal of Remote Sensing. 37(6): 596-611.


    inventory, lidar, multilevel sampling

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page