Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Elizabeth Bent; Preston Kiekel; Rebecca Brenton; D.Lee Taylor
    Date: 2011
    Source: Applied and Environmental Microbiology. 77: 3351-3359. doi:10.1128/AEM.02575-10.
    Publication Series: Scientific Journal (JRNL)
    Station: Pacific Northwest Research Station
    PDF: Download Publication  (864.52 KB)


    The role of common mycorrhizal networks (CMNs) in postfire boreal forest successional trajectories is unknown. We investigated this issue by sampling a 50-m by 40-m area of naturally regenerating black spruce (Picea mariana), trembling aspen, (Populus tremuloides), and paper birch (Betula papyrifera) seedlings at various distances from alder (Alnus viridis subsp. crispa), a nitrogen-fixing shrub, 5 years after wildfire in an Alaskan interior boreal forest. Shoot biomasses and stem diameters of 4-year-old seedlings were recorded, and the fungal community associated with ectomycorrhizal (ECM) root tips from each seedling was profiled using molecular techniques. We found distinct assemblages of fungi associated with alder compared with those associated with the other tree species, making the formation of CMNs between them unlikely. However, among the spruce, aspen, and birch seedlings, there were many shared fungi, raising the possibility that these regenerating seedlings may form interspecies CMNs. Distance between samples did not influence how similar ECM root tip-associated fungal communities were, and of the fungal groups identified, only one of them was more likely to be shared between seedlings that were closer together, suggesting that the majority of fungi surveyed did not have a clumped distribution across the small scale of this study. The presence of some fungal ribotypes was associated with larger or smaller seedlings, suggesting that these fungi may play a role in the promotion or inhibition of seedling growth. The fungal ribotypes associated with larger seedlings were different between spruce, aspen, and birch, suggesting differential impacts of some host-fungus combinations. One may speculate that wildfire-induced shifts in a given soil fungal community could result in variation in the growth response of different plant species after fire and a shift in regenerating vegetation.

    Publication Notes

    • Visit PNW's Publication Request Page to request a hard copy of this publication.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Bent, Elizabeth; Kiekel, Preston; Brenton, Rebecca; Taylor, D. Lee. 2011. Root-associated ectomycorrhizal fungi shared by various boreal forest seedlings naturally regenerating after a fire in interior Alaska and correlation of different fungi with host growth responses. Applied and Environmental Microbiology. 77: doi:10.1128/AEM.02575-10: 3351-3359.


    common mycorrhizal networks (CMN), fire, fungi

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page