Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    The Gap Partitioning Hypothesis (GPH) posits that gaps create heterogeneity in resources crucial for tree regeneration in closed-canopy forests, allowing trees with contrasting strategies to coexist along resource gradients. Few studies have examined gap partitioning of temperate, ground-layer vascular plants. We used a ground-layer plant community of a temperate deciduous forest in northern Wisconsin, USA, as a model system to test whether the GPH extends to the relatively species-rich ground layer. We used a well-replicated experimental approach that included a gap opening gradient (five gap sizes, 6, 10, 20, 30 and 46 m diameter, and undisturbed reference areas), a within-gap location gradient (gap edge to center), and a temporal gradient (0, 2, 6 and 13 years after gap creation). The data were observations of ground-layer plant abundance, published plant traits, and a modeled index of understory light environments.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Kern, Christel C.; Montgomery, Rebecca A.; Reich, Peter B.; Strong, Terry F. 2013. Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest. Journal of plant Ecology. 6(1): 101-112. Doi:10.1093/jpe/rts016.


    Google Scholar


    herbaceous layer, experimental gaps, proximity to edge, functional diversity, plant traits

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page