Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub


    Forests mitigate climate change by sequestering CO2 from the atmosphere and accumulating it in biomass storage pools. However, in dry conifer forests, fire occasionally returns large quantities of CO2 to the atmosphere. Both the total amount of carbon stored and its susceptibility to loss may be altered by post-fire land management strategies. Forest managers face a great challenge when asked to manage these lands for C sequestration and simultaneously reduce fire hazard. The objective of our study was to understand how differing post-fire management strategies affect C sequestration and the size of storage pools in the ten years after a wildfire in a Sierra Nevada mixed-conifer forest. Post- fire management regimes included : (1) salvage-logged, planted, and Intensively Managed plantation (IM); (2) Salvage-logged and Planted (SP); (3) No Salvage (NS); and (4) Green Canopy (GC), where fire burned through, but 95% of the overstory trees survived. Carbon sequestration and storage were estimated from measurements of individual ecosystem carbon pools. These pools included: aboveground trees, saplings, snags, stumps, and understory, coarse wood and fine wood, duff, and soil. We found total ecosystem carbon storage was 282 ± 15 Mg ha-1 of C in the NS treatment, 206 ± 31 Mg ha-1 in the GC, 137 ± 13 Mg ha-1 in the SP, and 101 ± 15 Mg ha-1 in the IM treatment. There were no significant treatment differences in C storage among the pools that would constitute labile/fine fuels, but there were differences in recalcitrant (coarse fuel) C pools. The greatest C storage in recalcitrant C pools was 258 ± 10 Mg ha-1 in the NS and 197 ± 30 Mg ha-1 in the GC treatments. Post- fire carbon sequestration rates were 1.6 ± 0.7 Mg ha-1 year-1 of C in the GC, 0.7 ± 0.3 Mg ha-1 year-1 in the SP, 0.5 ± 0.1 Mg ha-1 year-1 in the NS, and 0.5 ± 0.1 Mg ha-1 year-1 in the IM treatments, but these differences were not statistically significant. Tree carbon sequestration rates were highest in the GC treatment and lowest in the NS treatment. Overall, our results suggest that a mature green-canopy stand provides most benefit in terms of C sequestration, wildfire resilience, and other ecosystem services at a point ten years after severe wildfire. For forests that suffer high fire mortality, unsalvaged (NS) stands will retain the most carbon onsite.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Powers, Elizabeth M.; Marshall, John D.; Zhang, Jianwei; Wei, Liang. 2013. Post-fire management regimes affect carbon sequestration and storage in a Sierra Nevada mixed conifer forest. Forest Ecology and Management 291:268-277.


    Google Scholar


    carbon flux, carbon storage, forest management, fire, climate change

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page