Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Climate change has the potential to alter streamflow regimes, having ecological, economic, and societal implications. In the northeastern United States, it is unclear how climate change may affect surface water supply, which is of critical importance in this densely populated region. The objective of this study was to evaluate the impact of climate change on the timing and quantity of streamflow at small watersheds at the Hubbard Brook Experimental Forest in New Hampshire. The site is ideal for this analysis because of the availability of long-term hydroclimatological records for analyzing past trends and ample data to parameterize and test hydrological models used to predict future trends. In this study, future streamflow projections were developed with the forest watershed model PnETBGC, driven by climate change scenarios from statistically downscaled outputs of atmospheric-ocean general circulation models. Results indicated that earlier snowmelt and the diminishing snowpack is advancing the timing and reducing the magnitude of peak discharge associated with snowmelt. Past increases in precipitation have caused annual water yield to increase significantly, a trend that is expected to continue under future climate change. Significant declines in evapotranspiration have been observed over the long-term record, although the cause has not been identified. In the future, evapotranspiration is expected to increase in response to a warmer and wetter environment. These increases in evapotranspiration largely offset increases in precipitation, resulting in relatively little change in streamflow. Future work should aim to decrease uncertainty in the climate projections, particularly for precipitation, obtain a better understanding of the effect of CO2 on vegetation, determine if climate-induced changes in tree species composition will influence discharge, and assess the impacts of changing hydrology on downstream water supplies.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Campbell, John L.; Driscoll, Charles T.; Pourmokhtarian, Afshin; Hayhoe, Katharine. 2011. Streamflow responses to past and projected future changes in climate at the Hubbard Brook Experimental Forest, New Hampshire, USA. Water Resources Research. 47: W02514. doi:10.1029/2010WR009438

    Cited

    Google Scholar

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page