Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): E. Gregory McPherson; Qingfu Xiao; Elena Aguaron
    Date: 2013
    Source: Landscape and Urban Planning. 120: 70-84
    Publication Series: Scientific Journal (JRNL)
    PDF: View PDF  (4.44 MB)

    Description

    This paper describes the use of field surveys, biometric information for urban tree species and remote sensing to quantify and map carbon (C) storage, sequestration and avoided emissions from energy savings. Its primary contribution is methodological; the derivation and application of urban tree canopy (UTC) based transfer functions (t C ha-1 UTC). Findings for Los Angeles and Sacramento illustrate the complex role of regional and local determinants. Although average tree density and size were substantially greater in Los Angeles, the mean C storage density (8.15 t ha-1) was 53 percent of Sacramento’s (15.4 t ha-1). In Sacramento, native oaks with very high wood densities (815 kg m-3) accounted for 30 percent of total basal area. In Los Angeles, the most dominant taxa had relatively low wood densities (350 – 550 kg m-3). The inclusion of relatively more wooded land in the Sacramento study area may partially explain higher C storage levels. In Los Angeles, where development is relatively dense, 14 percent of all trees surveyed shaded more than one building compared to only 2 percent in Sacramento. Consequently, the transfer function for avoided emissions in Los Angeles (2.77 t ha-1 UTC yr-1) exceeded Sacramento (2.72 t ha-1 UTC yr-1). The approach described here improves C estimates and increases the resolution at which C can be mapped across a region. It can be used to map baseline C storage levels for climate action planning, identify conservation areas where UTC densities are highest and determine where opportunities for expanding UTC are greatest.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    McPherson, E. Gregory; Xiao, Qingfu; Aguaron, Elena. 2013. A new approach to quantify and map carbon stored, sequestered and emissions avoided by urban forests. Landscape and Urban Planning. 120: 70-84.

    Keywords

    carbon density, urban tree canopy, transfer function, urban forest structure, wood density, climate action planning

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page