Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): William J. De Groot; Michael D. Flannigan; Brian J. Stocks
    Date: 2013
    Source: In: González-Cabán, Armando, tech. coord. Proceedings of the fourth international symposium on fire economics, planning, and policy: climate change and wildfires. Gen. Tech. Rep. PSW-GTR-245 (English). Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 1-10
    Publication Series: General Technical Report (GTR)
    Station: Pacific Southwest Research Station
    PDF: View PDF  (0 B)

    Description

    Wildland fire regimes are primarily driven by climate/weather, fuels and people. All of these factors are dynamic and their variable interactions create a mosaic of fire regimes around the world. Climate change will have a substantial impact on future fire regimes in many global regions. Current research suggests a general increase in area burned and fire occurrence but there is a lot of global variability. Recent studies of future global fire weather under different climate change scenarios using several General Circulation Models are reviewed. A widespread increase in future fire weather severity was found over almost all the earth with increasing fire season length occurring in many regions, particularly at northern latitudes. In the boreal forest region, which represents about one-third of global forest cover, increased area burned over the last four decades has been linked to higher temperatures as a result of human-induced climate change. This trend in the boreal region is projected to continue as fire weather severity and fire intensity will sharply rise by up to 4-5 times current peak values by the end of the century. Many national fire management organizations already operate at a very high level of efficiency, and there is a very narrow margin between suppression success and failure. Under a warmer and drier future climate, fire management agencies will be challenged by fire weather conditions that could push current suppression capacity beyond a tipping point, resulting in a substantial increase in large fires.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    De Groot, William J.; Flannigan, Michael D.; Stocks, Brian J. 2013. Climate change and wildfires. In: González-Cabán, Armando, tech. coord. Proceedings of the fourth international symposium on fire economics, planning, and policy: climate change and wildfires. Gen. Tech. Rep. PSW-GTR-245 (English). Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 1-10.

    Keywords

    General Circulation Models, IPCC climate change scenarios, fire weather severity, fire intensity, fire management

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page