Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Karen E. Mock; Colin M. Callahan; M. Nurul Islam-Faridi; John D. Shaw; Hardeep S. Rai; Stewart C. Sanderson; Carol A. Rowe; Ronald J. Ryel; Michael D. Madritch; Richard S. Gardner; Paul G. Wolf
    Date: 2012
    Source: PLoS ONE. 7(10): e48406.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (531.38 KB)

    Description

    We document high rates of triploidy in aspen (Populus tremuloides) across the western USA (up to 69% of genets), and ask whether the incidence of triploidy across the species range corresponds with latitude, glacial history (as has been documented in other species), climate, or regional variance in clone size. Using a combination of microsatellite genotyping, flow cytometry, and cytology, we demonstrate that triploidy is highest in unglaciated, drought-prone regions of North America, where the largest clone sizes have been reported for this species. While we cannot completely rule out a low incidence of undetected aneuploidy, tetraploidy or duplicated loci, our evidence suggests that these phenomena are unlikely to be significant contributors to our observed patterns. We suggest that the distribution of triploid aspen is due to a positive synergy between triploidy and ecological factors driving clonality. Although triploids are expected to have low fertility, they are hypothesized to be an evolutionary link to sexual tetraploidy. Thus, interactions between clonality and polyploidy may be a broadly important component of geographic speciation patterns in perennial plants. Further, cytotypes are expected to show physiological and structural differences which may influence susceptibility to ecological factors such as drought, and we suggest that cytotype may be a significant and previously overlooked factor in recent patterns of high aspen mortality in the southwestern portion of the species range. Finally, triploidy should be carefully considered as a source of variance in genomic and ecological studies of aspen, particularly in western U.S. landscapes.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Mock, Karen E.; Callahan, Colin M.; Islam-Faridi, M. Nurul; Shaw, John D.; Rai, Hardeep S.; Sanderson, Stewart C.; Rowe, Carol A.; Ryel, Ronald J.; Madritch, Michael D.; Gardner, Richard S.; Wolf, Paul G. 2012. Widespread triploidy in western North American aspen (Populus tremuloides). PLoS ONE. 7(10): e48406.

    Cited

    Google Scholar

    Keywords

    triploidy, aspen, Populus tremuloides

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/44542