Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): G. E. Ponce Campos; M. S. Moran; A. Huete; Y. Zhang; C. Bresloff; T.E. Huxman; D. Eamus; D. D. Bosch; A. R. Buda; S. A. Gunter; T. Heartsill Scalley; S. G. Kitchen; M. P. McClaran; W. H. McNab; D. S. Montoya; J. A. Morgan; D. P. C. Peters; E. J. Sadler; M. S. Seyfried; P. J. Starks
    Date: 2013
    Source: Nature 494:349 - 353.
    Publication Series: Scientific Journal (JRNL)
    Station: International Institute of Tropical Forestry
    PDF: View PDF  (369.96 KB)


    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological model for many regions1. Largescale, warm droughts have recently occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security2,3. Here we compare the functional response of above-ground net primary production to contrasting hydroclimatic periods in the late twentieth century (1975–1998), and drier, warmer conditions in the early twenty-first century (2000–2009) in the Northern and Southern Hemispheres. We find a common ecosystem water-use efficiency (WUEe: above-ground net primary production/evapotranspiration) across biomes ranging from grassland to forest that indicates an intrinsic system sensitivity to water availability across rainfall regimes, regardless of hydroclimatic conditions. We found higher WUEe in drier years that increased significantly with drought to a maximum WUEe across all biomes; and a minimum native state in wetter years that was common across hydroclimatic periods. This indicates biome-scale resilience to the interannual variability associated with the early twenty-first century drought—that is, the capacity to tolerate low, annual precipitation and to respond to subsequent periods of favourable water balance. These findings provide a conceptual model of ecosystem properties at the decadal scale applicable to the widespread altered hydroclimatic conditions that are predicted for later this century. Understanding the hydroclimatic threshold that will break down ecosystem resilience and alter maximum WUEe may allow us to predict land-surface consequences as large regions become more arid, starting with waterlimited, low-productivity grasslands.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Ponce Campos, G. E.; Moran, M. S.; Huete, A.; Zhang, Y.; Bresloff, C.; Huxman, T.E.; Eamus, D.; Bosch, D. D.; Buda, A. R.; Gunter, S. A.; Heartsill Scalley, T.; Kitchen, S. G.; McClaran, M. P.; McNab, W. H.; Montoya, D. S.; Morgan, J. A.; Peters, D. P. C.; Sadler, E. J.; Seyfried, M. S.; Starks, P. J. 2013. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494:349 - 353.


    Google Scholar


    climate change, drought, ecosystem resilience, water-use efficiency

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page