Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    In many U.S. federally designated wilderness areas, wildfires are likely to burn of their own accord due to favorable management policies and remote location. Previous research suggested that limitations on fire size can result from the evolution of natural fire regimes, specifically in places where fuels were recently reduced by previous burning. To explore the broader-scale importance of fire management on wilderness landscapes, we selected three study regions representing diverse ecosystems in the western U.S. and modeled the change in fire size distributions across a gradient defined by wilderness/ non-wilderness boundaries. For randomly selected locations across the gradient, we derived a scaling parameter (a) using fire size-frequency data for public lands (1984­2007); the parameter reflected the magnitude of change in the right tail of the fire size distribution where the largest fires reside.We then used quantile regression to model changes in a across the wilderness gradient, interpreting the results in terms of constraints on the relative role of large fires in structuring the fire size distribution. In the Southwest study region, the influence of large fires on size distributions decreased across the gradient toward wilderness at some places, suggesting that increased occurrence of natural burning, favored by wilderness management, led to limitations on fire sizes within recent timeframes. In contrast, we were unable to support the expectation that wilderness fire management limits the role of large fires in the Sierra Nevada and Northern Rockies study regions. Rather, the predominance of large fires increased toward wilderness interiors. Among spatial climate and topographic roughness variables included in our study, only winter and fire season precipitation limited fire size in the Northern Rockies, whereas several constraints on large fire occurrence operated in other regions. In southwestern ecosystems, evidence is needed to document stability in fire size distributions through time. In ecosystems of the Sierra Nevada and Northern Rockies, a longer temporal extent of observations may better match scales of disturbance and recovery. Our findings reflect the role of wilderness in addressing a fire deficit which has resulted from strong human influences on forests and fires over the past 150 years.

    Publication Notes

    • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Haire, Sandra L.; McGarigal, Kevin; Miller, Carol. 2013. Wilderness shapes contemporary fire size distributions across landscapes of the western United States. Ecosphere. 4(1): Article 15.

    Cited

    Google Scholar

    Keywords

    environmental constraints, fire size distributions, landscape gradients, Northern Rocky Mountains, quantile regression, Sierra Nevada, southwestern United States, spatial climate, topographic roughness, wilderness management

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/44947