Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): William J. Lucas; Andrew Groover; Raffael Lichtenberger; Kaori Furuta; Shri-Ram Yadav; Yka Helariutta; Xin-Qiang He; Hiroo Fukuda; Julie Kang; Siobhan M. Brady; John W. Patrick; John Sperry; Akiko Yoshida; Ana-Flor Lopez-Millan; Michael A. Grusak; Pradeep Kachroo
    Date: 2013
    Source: J. Int. Plant Biol. 55(4):294-388
    Publication Series: Scientific Journal (JRNL)
    PDF: Download Publication  (2.0 MB)

    Description

    The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.

    Publication Notes

    • You may send email to psw_communications@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Lucas, William J.; Groover, Andrew; Lichtenberger, Raffael; Furuta, Kaori; Yadav, Shri-Ram; Helariutta, Yka; He, Xin-Qiang; Fukuda, Hiroo; Kang, Julie; Brady, Siobhan M.; Patrick, John W.; Sperry, John; Yoshida, Akiko; Lopez-Millan, Ana-Flor; Grusak, Michael A.; Kachroo, Pradeep. 2013. The plant vascular system: Evolution, development and functions. J. Int. Plant Biol. 55(4):294-388.

    Cited

    Google Scholar

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/44993