Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): A. L. Addison; J. A. Powell; D. L. Six; M. Moore; B. J. Bentz
    Date: 2013
    Source: Journal of Theoretical Biology. 335: 40-50.
    Publication Series: Scientific Journal (JRNL)
    Station: Rocky Mountain Research Station
    PDF: Download Publication  (921.74 KB)


    As global climate patterns continue to change and extreme weather events become increasingly common, it is likely that many ecological interactions will be affected. One such interaction is the multipartite symbiosis that exists between the mountain pine beetle and two species of fungi, Grosmannia clavigera and Ophiostoma montium. In this mutualism, the fungi provide nutrition to the beetle, while the fungi benefit by being dispersed to new host trees. Multi-partite mutualisms are predicted to be unstable due to strong direct competition among symbionts or natural selection for superior over inferior mutualists. However, this mutualism has remained stable over long periods of evolutionary time. In this paper, we developed a temperature-based model for the spread of fungi within a tree and connected it to an existing model for mountain pine beetle development. Using this integrated model for fungal growth, we explored the possibility that temperature variability is a stabilizing mechanism for the mountain pine beetle-fungi mutualism. Of the three types of temperature variability we tested: intra-year, inter-year and variability due to transitioning between different thermal habitats (thermal migration), we found that thermal migration was the most robust stabilizing mechanism. Additionally, we found that the MPB attack density or spacing between fungal lesions also had a significant effect on the stability of the system. High attack densities or close lesion spacings also tended to stabilize the system, regardless of temperature.

    Publication Notes

    • You may send email to to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.


    Addison, A. L.; Powell, J. A.; Six, D. L.; Moore, M.; Bentz, B. J. 2013. The role of temperature variability in stabilizing the mountain pine beetle-fungus mutualism. Journal of Theoretical Biology. 335: 40-50.


    Google Scholar


    Dendroctonus, fungal associates, mutualism stability, overlapping phenology, phenology modeling

    Related Search

    XML: View XML
Show More
Show Fewer
Jump to Top of Page