Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): L. R. Walker; A. B. Shiels; P. J. Bellingham; A. D. Sparrow; N. Fetcher; F. H. Landau; D. J. Lodge
    Date: 2013
    Source: Journal of Ecology. 101: 650-661.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (384.27 KB)

    Description

    Summary 1. Abiotic variables are critical drivers of succession in most primary seres, but how their influence on biota changes over time is rarely examined. Landslides provide good model systems for examining abiotic influences because they are spatially and temporally heterogeneous habitats with distinct abiotic and biotic gradients and post-landslide erosion. 2. In an 18-year study on 6 Puerto Rican landslides, we used structural equation models to interpret the changing effects of abiotic influences (landslide dimensions, slope, aspect, elevation, parent material and related soil properties) on seed plants (density and diversity), tree fern density, scrambling fern cover, canopy openness and soil development (nitrogen, soil organic matter, pH and cation exchange capacity). 3. Seven years after landslide formation, catchment size (the landslide area above the point of measurement) was the key abiotic factor influencing plants. The larger the catchment the greater was the diversity and density of seed plants. Conversely, the smaller the catchment the greater was the density of tree ferns and the cover of scrambling ferns. 4. Eighteen years after landslide formation, landslide slope was the key abiotic influence. The greater the slope, the lower was the density and diversity of seed plants and the greater was the scrambling fern cover. 5. Aspect, particularly east-facing slopes exposed to wind disturbances, positively influenced tree fern densities at both 7 and 18 years and negatively influenced seed plants and scrambling ferns at 18 years. Soils were least developed, that is, had lowest soil nitrogen and organic matter concentrations, after 18 years on steep slopes (like seed plants); soils were most developed near landslide edges, on hurricane-exposed slopes (like tree ferns) and where there were high soil potassium concentrations. 6. Synthesis. Abiotic variables have important influences on plant succession on landslides and the relative influence of different abiotic variables changes with time. Improved predictability of temporal dynamics will rely not only on understanding the effects of initial disturbances and subsequent biological responses but also on the different and changing influences exerted by each abiotic variable.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Walker, L. R.; Shiels, A. B.; Bellingham, P. J.; Sparrow, A. D.; Fetcher, N.; Landau, F. H.; Lodge, D. J. 2013. The shifting influence of abiotic drivers during landslide succession in Puerto Rico. Journal of Ecology 101:650-661.

    Keywords

    catchment, determinants of plant community diversity and structure, disturbance, diversity, erosion, hurricane, scrambling fern, slope, structural equation modelling, tree fern, tropical forest

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/45092