Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub

    Description

    Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would expect relative recruitment to be higher in cold and dry climates as a result of tree migration with juveniles located further poleward than adults. Alternatively, relative recruitment could be higher in warm and wet climates as a result of higher tree population turnover with increased temperature and precipitation. Using the USDA Forest Service's Forest Inventory and Analysis data at regional scales, we jointly modeled juvenile and adult abundance distributions for 65 tree species in climate space of the eastern United States. We directly compared the optimal climate conditions for juveniles and adults, identified the climates where each species has high relative recruitment, and synthesized relative recruitment patterns across species. Results suggest that for 77% and 83% of the tree species, juveniles have higher optimal temperature and optimal precipitation, respectively, than adults. Across species, the relative recruitment pattern is dominated by relatively more abundant juveniles than adults in warm and wet climates. These different abundance-climate responses through life history are consistent with faster population turnover and inconsistent with the geographic trend of large-scale tree migration. Taken together, this juvenile-adult analysis suggests that tree species might respond to climate change by having faster turnover as dynamics accelerate with longer growing seasons and higher temperatures, before there is evidence of poleward migration at biogeographic scales.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Zhu, Kai; Woodall, Christopher W.; Ghosh, Souparno; Gelfand, Alan E.; Clark, James S. 2014. Dual impacts of climate change: forest migration and turnover through life history. Global Change Biology. 20(1): 251-264.

    Cited

    Google Scholar

    Keywords

    abundance, biogeography, climate change, Forest Inventory and Analysis, range shift, seedling, species distribution model, tree migration

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/45294