Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Guofang Miao; Asko Noormets; Jean-Christophe Domec; Carl C. TrettinSteve G. McNultyGe Sun; John S. King
    Date: 2013
    Source: Journal Of Geophysical Research: Biogeosciences 118:1748-1762
    Publication Series: Scientific Journal (JRNL)
    Station: Southern Research Station
    PDF: View PDF  (1 MB)

    Description

    Anthropogenic and environmental pressures on wetland hydrology may trigger changes in carbon (C) cycling, potentially exposing vast amounts of soil C to rapid decomposition. We measured soil CO2 efflux (Rs) continuously from 2009 to 2010 in a lower coastal plain forested wetland in North Carolina, U.S., to characterize its main environmental drivers. To understand and quantify the spatial variation due to microtopography and associated differences in hydrology, measurements were conducted at three microsites along a microtopographic gradient. The seasonal hysteresis in Rs differed by microtopographic location and was caused by the transitions between flooded and nonflooded conditions. Because flooded Rs was small, we reported Rs dynamics mainly during nonflooded periods. A nested model, modified from conventional Q10 (temperature sensitivity) model with dynamic parameters, provided a significantly better simulation on the observed variation of Rs. The model performed better with daily data, indicating that soil temperature (Ts) and water table depth (WTD) were the primary drivers for seasonal variation. The diel variation of Rs was high and independent of Ts and WTD, which both had small diel variations, suggesting the likely association with plant activity. Overall, the site-average soil CO2 efflux was approximately 960–1103 g Cm-2 yr-1 in 2010, of which 93% was released during nonflooded periods. Our study indicates that Rs is highly linked to hydroperiod and microtopography in forested wetlands and droughts in wetlands will accelerate soil C loss.

    Publication Notes

    • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication.
    • (Please specify exactly which publication you are requesting and your mailing address.)
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Miao, Guofang; Noormets, Asko; Domec, Jean-Christophe; Trettin, Carl C.; McNulty, Steve G.; Sun, Ge; King, John S. 2013. The effect of water table fluctuation on soil respiration in a lower coastal plain forested wetland in the southeastern U.S. Journal Of Geophysical Research: Biogeosciences 118:1748-1762.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/45484