Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Thomas J. Schwartz; Samuel M. Goodman; Christian M. Osmundsen; Esben Taarning; Michael D. MozuchJill GaskellDaniel CullenPhilip J. Kersten; James A. Dumesic
    Date: 2013
    Source: ACS Catal. Volume 3, 2013; pp. 2689-2693.
    Publication Series: Scientific Journal (JRNL)
    Station: Forest Products Laboratory
    PDF: View PDF  (667.39 KB)

    Description

    Furylglycolic acid (FA), a pseudoaromatic hydroxy-acid suitable for copolymerization with lactic acid, can be produced from glucose via enzymatically derived cortalcerone using a combination of Brønsted and Lewis acid catalysts. Cortalcerone is first converted to furylglyoxal hydrate (FH) over a Brønsted acid site (HCl or Al-containing betazeolite), and FH is subsequently converted to FA over a Lewis acid site (Sn-beta zeolite). Selectivity for conversion of FH to FA is as high as 80% at 12% conversion using tetrahydrofuran (THF) as a solvent at 358 K. Higher conversion of FH leads to FA-catalyzed degradation of FH and subsequent deactivation of the catalyst by the deposition of carbonaceous residues. The deactivated catalyst can be regenerated by calcination. Cortalcerone can be produced from 10% glucose solution using recombinant Escherichia coli strains expressing pyranose 2-oxidase and aldos-2-ulose dehydratase from the wood-decay fungus Phanerochaete chrysosporium BKM-F-1767. This enzymatically derived cortalcerone is converted in one pot to FA in a methanol/water solvent over an Al-containing Sn-beta zeolite possessing both Brønsted and Lewis acid sites, achieving 42% selectivity to FA at 53% cortalcerone conversion.

    Publication Notes

    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Schwartz, Thomas J.; Goodman, Samuel M.; Osmundsen, Christian M.; Taarning, Esben; Mozuch, Michael D.; Gaskell, Jill; Cullen, Daniel; Kersten, Philip J.; Dumesic, James A. 2013. Integration of Chemical and Biological Catalysis: Production of Furylglycolic Acid from Glucose via Cortalcerone. ACS Catal. Volume 3, 2013; pp. 2689-2693.

    Cited

    Google Scholar

    Keywords

    Sn-beta zeolite, MPVO reaction, hydride transfer, poly(lactic acid), whole-cell enzyme catalysis, pyranose-2-oxidase

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page