Skip to Main Content
U.S. Forest Service
Caring for the land and serving people

United States Department of Agriculture

Home > Search > Publication Information

  1. Share via EmailShare on FacebookShare on LinkedInShare on Twitter
    Dislike this pubLike this pub
    Author(s): Sharon A. Cantrell; D. Jean Lodge; Carlos A. Cruz; Luis M. García; Jose R. Pérez-Jiménez; Marirosa Molina
    Date: 2013
    Source: Ecological Bulletins. 54: 87-100.
    Publication Series: Scientific Journal (JRNL)
    Station: Northern Research Station
    PDF: View PDF  (768.97 KB)

    Description

    Microbial communities respond to multiple abiotic and biotic factors that change along elevation gradients. We compare changes in microbial community composition in soil and review previous research on differential abundance of microbial functional groups along an elevation gradient in eastern Puerto Rico. Previous studies within the Luquillo Mountains showed that activity of methanogenic bacteria increased significantly with elevation, whereas diversity, abundance or activity decreased with elevation in 'slime molds', microbial nitrogen-fixing activity (nitrogenase), and abundance of basidiomycete fungi that degrade lignin in leaf litter. Our results, based on fatty acid (FA) composition and TRFLP analyses from a longer gradient (dry coastal forest to elfin rainforest) produced humped distributions for Shannon diversity of FA, fungal to bacteria (F:B) ratios, fungi, Myxomycetes, G- FA cy19:0 and sulfate reducing bacteria (SRB) 10Me18:0. Soil microbial communities differed significantly among forest types using ANCOVA. TRFLP were more frequently unique to forest types in fungi than bacteria, but we found unique and diverse sulfidogenic and crenarchaeal assemblages in some forest types, with highest diversity in high elevation palm and elfin forests. In multiple linear regression (MLR) models, soil moisture was predictive for all but Actinomycete FA abundance, and forest type contributed significantly to these same models for F:B ratios and all FA fractions except for G- SRB 10Me18:0, and G+ bacteria 15:0. F:B ratio peaked at mid-elevation, then declined with increasing moisture at higher elevation. Since most G- and G+ bacterial FA were positively related to soil pH in MLR models, lower pH in mid-elevation tabonuco forest soil may suppress bacteria and contribute to higher F:B ratios in this forest type.

    Publication Notes

    • Check the Northern Research Station web site to request a printed copy of this publication.
    • Our on-line publications are scanned and captured using Adobe Acrobat.
    • During the capture process some typographical errors may occur.
    • Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.
    • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

    Citation

    Cantrell, Sharon A.; Lodge, D. Jean; Cruz,Carlos A.; García, Luis M.; Pérez-Jiménez, Jose R.; Molina, Marirosa. 2013. Differential abundance of microbial functional groups along the elevation gradient from the coast to the Luquillo Mountains. Ecological Bulletins. 54: 87-100.

    Related Search


    XML: View XML
Show More
Show Fewer
Jump to Top of Page
https://www.fs.usda.gov/treesearch/pubs/45703